Taylor Series Example: Efficient choice of "a"
Suppose you want to approximate $\sin \left(\frac{8 \pi}{5}\right)$ to within 0.00001 .

You can use the Maclaurin Series:

$$
\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\ldots=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} x^{2 n+1}, \quad(-\infty, \infty)
$$

with $\mathrm{x}=\frac{8 \pi}{5}$, so $\sin \left(\frac{8 \pi}{5}\right)=\left(\frac{8 \pi}{5}\right)-\frac{\left(\frac{8 \pi}{5}\right)^{3}}{3!}+\frac{\left(\frac{8 \pi}{5}\right)^{5}}{5!}-\frac{\left(\frac{8 \pi}{5}\right)^{7}}{7!}+\ldots=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!}\left(\frac{8 \pi}{5}\right)^{2 n+1}, \quad(-\infty, \infty)$
However, to get the desired accuracy, you would need the $21^{\text {st }}$ degree polynomial since the first term of this alternating series which is less than 0.00001 is $\frac{\left(\frac{8 \pi}{5}\right)^{23}}{23!} \approx 0.0000005$ Thus you would have to compute:

$$
\sin \left(\frac{8 \pi}{5}\right) \approx\left(\frac{8 \pi}{5}\right)-\frac{\left(\frac{8 \pi}{5}\right)^{3}}{3!}+\frac{\left(\frac{8 \pi}{5}\right)^{5}}{5!}-\frac{\left(\frac{8 \pi}{5}\right)^{7}}{7!}+\ldots+\frac{\left(\frac{8 \pi}{5}\right)^{21}}{21!}
$$

That is a lot of work!! A more efficient way to approximate $\sin \left(\frac{8 \pi}{5}\right)$ is to chose a value of " a " in the Taylor series formula $\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}$ that is near $\frac{8 \pi}{5}$ for which the sine is easily computed. Notice $\frac{3 \pi}{2}=\frac{15 \pi}{10}$ which is near $\frac{16 \pi}{10}=\frac{8 \pi}{5}$, and $\sin \left(\frac{3 \pi}{2}\right)$ is easily computed, so find the Taylor Series for sinx with $\mathrm{a}=\frac{3 \pi}{2}$.

$$
\sin x=-1+\frac{\left(x-\frac{3 \pi}{2}\right)^{2}}{2!}-\frac{\left(x-\frac{3 \pi}{2}\right)^{4}}{4!}+\frac{\left(x-\frac{3 \pi}{2}\right)^{6}}{6!}-\ldots=\sum_{n=0}^{\infty} \frac{(-1)^{n-1}}{(2 n)!}\left(x-\frac{3 \pi}{2}\right)^{2 n}, \quad(-\infty, \infty)
$$

so

$$
\begin{aligned}
\sin \left(\frac{8 \pi}{5}\right) & =-1+\frac{\left(\frac{8 \pi}{5}-\frac{3 \pi}{2}\right)^{2}}{2!}-\frac{\left(\frac{8 \pi}{5}-\frac{3 \pi}{2}\right)^{4}}{4!}+\frac{\left(\frac{8 \pi}{5}-\frac{3 \pi}{2}\right)^{6}}{6!}-\ldots=\sum_{n=0}^{\infty} \frac{(-1)^{n-1}}{(2 n)!}\left(\frac{8 \pi}{5}-\frac{3 \pi}{2}\right)^{2 n}, \quad(-\infty, \infty) \\
& =-1+\frac{\left(\frac{\pi}{10}\right)^{2}}{2!}-\frac{\left(\frac{\pi}{10}\right)^{4}}{4!}+\frac{\left(\frac{\pi}{10}\right)^{6}}{6!}-\ldots=\sum_{n=0}^{\infty} \frac{(-1)^{n-1}}{(2 n)!}\left(\frac{\pi}{10}\right)^{2 n}, \quad(-\infty, \infty)
\end{aligned}
$$

In this case the first term that is less than 0.00001 is $\frac{\left(\frac{\pi}{10}\right)^{6}}{6!} \approx 0.000001$. Thus $\sin \left(\frac{8 \pi}{5}\right)$ can be approximated by simply using the $4^{\text {th }}$ degree Taylor polynomial

$$
\sin \left(\frac{8 \pi}{5}\right)=-1+\frac{\left(\frac{\pi}{10}\right)^{2}}{2!}-\frac{\left(\frac{\pi}{10}\right)^{4}}{4!} \approx-0.9510578
$$

