
Taylor	Series	Example:		Efficient	choice	of	“a”	
	
Suppose	you	want	to	approximate	
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You	can	use	the	Maclaurin	Series:	
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However,	to	get	the	desired	accuracy,	you	would	need	the	21st	degree	polynomial		
since	the	first	term	of	this	alternating	series	which	is	less	than	0.00001	is	
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That	is	a	lot	of	work!!		A	more	efficient	way	to	approximate	
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In	this	case	the	first	term	that	is	less	than	0.00001	is	
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be	approximated	by	simply	using	the	4th	degree	Taylor	polynomial	
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